Skip to content
目录

实现常见的飞线效果

Markdown 官方教程

准备数据

这里我直接复制了echarts例子里常见的飞线数据来测试了,业务里请使用自己的数据

这里构造了城市飞往上海的数据集合

js
var geoCoordMap = {
            '上海': [121.4648, 31.2891],
            '东莞': [113.8953, 22.901],
            '东营': [118.7073, 37.5513],
            '中山': [113.4229, 22.478],
            '临汾': [111.4783, 36.1615],
            '临沂': [118.3118, 35.2936],
            '丹东': [124.541, 40.4242],
            '丽水': [119.5642, 28.1854],
            '乌鲁木齐': [87.9236, 43.5883],
            '佛山': [112.8955, 23.1097],
            '保定': [115.0488, 39.0948],
            '兰州': [103.5901, 36.3043],
            '包头': [110.3467, 41.4899],
            '北京': [116.4551, 40.2539],
            '北海': [109.314, 21.6211],
            '南京': [118.8062, 31.9208],
            '南宁': [108.479, 23.1152],
            '南昌': [116.0046, 28.6633],
            '南通': [121.1023, 32.1625],
            '厦门': [118.1689, 24.6478],
            '台州': [121.1353, 28.6688],
            '合肥': [117.29, 32.0581],
            '呼和浩特': [111.4124, 40.4901],
            '咸阳': [108.4131, 34.8706],
            '哈尔滨': [127.9688, 45.368],
            '唐山': [118.4766, 39.6826],
            '嘉兴': [120.9155, 30.6354],
            '大同': [113.7854, 39.8035],
            '大连': [122.2229, 39.4409],
            '天津': [117.4219, 39.4189],
            '太原': [112.3352, 37.9413],
            '威海': [121.9482, 37.1393],
            '宁波': [121.5967, 29.6466],
            '宝鸡': [107.1826, 34.3433],
            '宿迁': [118.5535, 33.7775],
            '常州': [119.4543, 31.5582],
            '广州': [113.5107, 23.2196],
            '廊坊': [116.521, 39.0509],
            '延安': [109.1052, 36.4252],
            '张家口': [115.1477, 40.8527],
            '徐州': [117.5208, 34.3268],
            '德州': [116.6858, 37.2107],
            '惠州': [114.6204, 23.1647],
            '成都': [103.9526, 30.7617],
            '扬州': [119.4653, 32.8162],
            '承德': [117.5757, 41.4075],
            '拉萨': [91.1865, 30.1465],
            '无锡': [120.3442, 31.5527],
            '日照': [119.2786, 35.5023],
            '昆明': [102.9199, 25.4663],
            '杭州': [119.5313, 29.8773],
            '枣庄': [117.323, 34.8926],
            '柳州': [109.3799, 24.9774],
            '株洲': [113.5327, 27.0319],
            '武汉': [114.3896, 30.6628],
            '汕头': [117.1692, 23.3405],
            '江门': [112.6318, 22.1484],
            '沈阳': [123.1238, 42.1216],
            '沧州': [116.8286, 38.2104],
            '河源': [114.917, 23.9722],
            '泉州': [118.3228, 25.1147],
            '泰安': [117.0264, 36.0516],
            '泰州': [120.0586, 32.5525],
            '济南': [117.1582, 36.8701],
            '济宁': [116.8286, 35.3375],
            '海口': [110.3893, 19.8516],
            '淄博': [118.0371, 36.6064],
            '淮安': [118.927, 33.4039],
            '深圳': [114.5435, 22.5439],
            '清远': [112.9175, 24.3292],
            '温州': [120.498, 27.8119],
            '渭南': [109.7864, 35.0299],
            '湖州': [119.8608, 30.7782],
            '湘潭': [112.5439, 27.7075],
            '滨州': [117.8174, 37.4963],
            '潍坊': [119.0918, 36.524],
            '烟台': [120.7397, 37.5128],
            '玉溪': [101.9312, 23.8898],
            '珠海': [113.7305, 22.1155],
            '盐城': [120.2234, 33.5577],
            '盘锦': [121.9482, 41.0449],
            '石家庄': [114.4995, 38.1006],
            '福州': [119.4543, 25.9222],
            '秦皇岛': [119.2126, 40.0232],
            '绍兴': [120.564, 29.7565],
            '聊城': [115.9167, 36.4032],
            '肇庆': [112.1265, 23.5822],
            '舟山': [122.2559, 30.2234],
            '苏州': [120.6519, 31.3989],
            '莱芜': [117.6526, 36.2714],
            '菏泽': [115.6201, 35.2057],
            '营口': [122.4316, 40.4297],
            '葫芦岛': [120.1575, 40.578],
            '衡水': [115.8838, 37.7161],
            '衢州': [118.6853, 28.8666],
            '西宁': [101.4038, 36.8207],
            '西安': [109.1162, 34.2004],
            '贵阳': [106.6992, 26.7682],
            '连云港': [119.1248, 34.552],
            '邢台': [114.8071, 37.2821],
            '邯郸': [114.4775, 36.535],
            '郑州': [113.4668, 34.6234],
            '鄂尔多斯': [108.9734, 39.2487],
            '重庆': [107.7539, 30.1904],
            '金华': [120.0037, 29.1028],
            '铜川': [109.0393, 35.1947],
            '银川': [106.3586, 38.1775],
            '镇江': [119.4763, 31.9702],
            '长春': [125.8154, 44.2584],
            '长沙': [113.0823, 28.2568],
            '长治': [112.8625, 36.4746],
            '阳泉': [113.4778, 38.0951],
            '青岛': [120.4651, 36.3373],
            '韶关': [113.7964, 24.7028]
        };

        const SHANGHAI = '上海';
        const shanghai = geoCoordMap[SHANGHAI];


        const data = [];
        for (const key in geoCoordMap) {
            if (key === SHANGHAI) {
                continue;
            }
            data.push({
                from: key,
                to: SHANGHAI,
                coordinates: [geoCoordMap[key], shanghai]
            })
        }

构造飞线的坐标点

因为maptalks里没有提供ArcLine这样的图形元素,所以需要我们自己来实现下ArcLine这样的一个简易的函数

js
function arcLinePoints(c1, c2, pointNumbers = 100) {
            if (!(c1 instanceof maptalks.Coordinate)) {
                c1 = new maptalks.Coordinate(c1);
            }
            if (!(c2 instanceof maptalks.Coordinate)) {
                c2 = new maptalks.Coordinate(c2);
            }
            //两点之间的距离
            const distance = map.computeLength(c1, c2);
            const x1 = c1.x, y1 = c1.y, x2 = c2.x, y2 = c2.y;
            const dx = x2 - x1, dy = y2 - y1;
            const coordinates = [];
            for (let i = 0; i <= pointNumbers; i++) {
                const x = dx / pointNumbers * i + x1;
                const y = dy / pointNumbers * i + y1;
                //改点的海拔值
                const height = Math.sin(Math.PI * i / pointNumbers) * distance / 4;
                coordinates.push([x, y, height])
            }
            return coordinates;
        }

原理很简单的:

  • 在两个点之间线性的插入一定的数量点
  • 点的海拔利用三角函数来计算下,之所以用三角函数因为三角函数的曲线就是个弧线函数,从下面的图片中我们很显然可以看出 只需要插值的点区间分布在[0,Math.PI]弧度之间即可,然后线性的计算每个插值点的弧度,然后就可以求出改点的sin值,然后利用飞线 两点之间的距离就可以简单的进行海拔插值了
  • 当然你可以使用专业的插值算法,这里图方便就用了简单的三角函数 Markdown 官方教程

加载线的数据

准备一个线的纹理图片,这里我只是简单的找个图片而已,业务里请自己设计个好看的纹理图片 Markdown 官方教程

js
function addLines(data) {
            const lines = data.map(d => {
                const [c1, c2] = d.coordinates;
                const line = new maptalks.LineString(arcLinePoints(c1, c2), {
                    symbol: {
                        linePatternFile: "./../assets/image/path_007_21.png",
                        // linePatternDx: 0,
                        // linePatternGap: 1,
                        linePatternAnimSpeed: 0.1,
                        lineWidth: 8,
                    },
                });
                return line;
            });
            layer.addGeometry(lines);

        }

开启bloom效果

js
const layer = new maptalks.LineStringLayer("vector", {
   enableAltitude: true,
   //开启bloom
    enableBloom: true
});

 const sceneConfig = {
            postProcess: {
                enable: true,
                antialias: { enable: true },
                bloom: {
                    enable: true,
                    threshold: 0,
                    factor: 1,
                    radius: 0.02,
                },
            }
        };
        const groupLayer = new maptalks.GroupGLLayer('group', [layer], { sceneConfig });
        groupLayer.addTo(map);

TIP

maptalks里的后处理效果都是在 GroupGLLayer里配置的,其是个全局的功能,其必须开启的, 需要后处理的图层或者图形开启bloom选项即可

This document is generated by mdpress